Monday, December 23, 2013

Reflow Soldering Oven: Survival Of Assembly Plants

By Harriett Crosby


The reflow soldering oven is used for attaching electric components to their contact pad, usually printed circuit boards (PCB) through a reflow process. A mixture of powdered solder and flux (usually sticky) is first used to loosely fix the electrical components on to the PCB which is then subjected to a controlled heat, melting the solder in the process resulting permanent joints.

One or more ceramic infrared heaters can be used for heating the oven. The heat is then directed through the radiation process to the assembly compartments although infrared ovens use fans to direct heat to the assembly. The target is usually to expose PCB to the optimum heat conditions enough to melt the solder into the correct positions without damaging the PCB or devices on it.

In a conventional reflow soldering oven, there are four phases or zone with a unique thermal profile for each. It all starts in the preheat zone where the time/temperature relationship (ramp-rate) is determined. This is the rate at which the temperature changes on the PCB and it is important so that the PCB does not crack or components do not get destroyed. The solvent in the paste starts to evaporate at this phase.

Thermal soak zone with temperature ranging from 60 to 120 is the next stage for the circuit board. The purpose is the removal of solder paste volatiles and flux activation (oxide reduction from leads and pads). Temperature control at this phase is also very essential. Too high temperature leads to damage to the PCB and the components while too low temperature leads for failure of full oxidation of flux.

The third phase is the reflow zone where the maximum possible temperatures are reached. The objective is to reduce the surface tension of the flux at the points of metal juncture which leads to metallurgical bonding involving combination of all the available solder powder. The maximum possible operating temperature is set slightly below the maximum tolerable temperature of that component with the lowest operating temperatures. The oven should therefore be efficient in heat control and monitoring.

The last stage is the cooling zone where the circuit board and its component are cooled. This process too is done under efficient temperature control as sudden temperature changes may result to thermal shock. It is also important to avoid excessive metallic formation at this stage as the desired finished circuit board should have components attached with fined grained structured solder making it mechanically sound.

In the modern ovens with the most up to date technology, there is usually no need for solder to flow more than once as these advances techniques guarantees that the granules in the paste can surpass the reflow temperature of the solder used. The trick is therefore to select an oven that can perform optimally at all the phases resulting into the best possible PCB with attached components.

The high rate of the change in business environment reflected by changing consumer needs, shifting technology, market changes and increasing competition all calls for drastic measures such as investing in highly efficient and optimally performing devices such as a reflow soldering oven which should drive production levels and increase profitability for the survival of the business.




About the Author:



0 comments:

Post a Comment

Share

Twitter Delicious Facebook Digg Stumbleupon Favorites More